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Abstract

A novel structural analysis method was developed and used to infer the in vivo material properties of an
important crop species. In particular, reference basis model updating was used to reconcile the predictions
of an idealized analytical model with the observed forced vibration response of living wheat, and thereby
determine the effective longitudinal moduli of the tissues comprising the vibrating structure. The ensuing
study of two varieties of wheat found that the stem tissue moduli decreased nonlinearly with height. These
findings were in good qualitative agreement with the limited data available in the literature, and the
updating procedure was highly effective in this unusual nondestructive testing application. To our
knowledge, this is the first time that the reference basis method has been used to infer the spatially varying
material properties of a living plant. Moreover, similar approaches could be used to characterize spatial
variations in the material properties of other lightweight composite structures of arbitrary geometry.
r 2004 Elsevier Ltd. All rights reserved.

1. Introduction

Wheat is one of the major crops of global agriculture and provides 20% of total human caloric
intake. A wheat stalk can be idealized as a slender vertical cantilever supporting a relatively
massive tip load. The stalk consists of a segmented hollow stem supporting a grain-bearing flower
or spike. A wheat crop is continually subjected to the forces of gravity and wind, and the
economic value of grain lost due to wind-induced crop failure has been estimated to be $8 billion
per year [1]. Crop scientists are therefore very interested in the mechanical properties of wheat.
see front matter r 2004 Elsevier Ltd. All rights reserved.
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There is some evidence that the mechanical properties of the wheat stem vary along its vertical
axis [2–5], but it is difficult to obtain a truly realistic measure of its effective elastic properties. In
fact, the reported values of the longitudinal Young’s moduli based on static testing of dried wheat
stem specimens span more than an order of magnitude [3,4,6–8]. Other estimates of the stem
elastic properties have been based on dynamic frequency response [2,9,10] or on ultrasonic
wavespeed [5]. While these earlier studies provided useful information, it is difficult to assess the
accuracy of the results. In contrast, the present study describes a new method that allows the stem
tissue moduli to be determined more accurately as a step-wise function of height. In particular, a
model updating scheme called the reference basis method is used to obtain a set of elastic moduli,
which is simultaneously consistent with the predictions of an idealized analytical model and with
the observed structural response.
Much effort in engineering analysis has been devoted to the development of mathematical

models of a physical system. In practice, there are usually some inconsistencies between theory
and experiment. For example, the theory may neglect certain dof, it may incorrectly represent
boundary conditions, or it relies on imprecise knowledge of structural geometry and/or material
properties. Similarly, the experimental response may be confounded by experimental artifact or
by instrument inaccuracies. In most cases, one seeks a model that is most consistent with all the
available information rather than an exact match to either theory or experiment. Model updating
is one approach that can be used to achieve this goal. A number of specific updating techniques
have been proposed and investigated. These include system identification, sensitivity methods, and
mixed matrix approaches, as well as various so-called reference basis methods [11]. The reference
basis concept was first popularized by Baruch [12,13] and Berman [14] in the late 1970s. Typically,
experimental knowledge of one physical quantity (e.g., mass) is assumed to be perfectly accurate,
while other parameters (e.g., stiffness, modes) are assumed to be known in a more approximate
sense, and are therefore updated to reduce model inconsistency. Another version of this approach
[15] uses general weighting functions and demonstrates the underlying parallel between reference
basis and mixed matrix methods. One advantage of the reference basis approach is that a closed-
form solution can be obtained using low-order matrix algebra. Another is that mass can usually
be measured with great accuracy, and therefore establishes the best reference basis from which to
search for the unknown stiffness. Sensitivity methods could also be used but cannot leverage the
superior accuracy of the mass data.
In the present work, the motivation for use of reference basis model updating was to infer the

elastic moduli of a living wheat stem. As far as we know, this is the first time that in vivo material
property data have been obtained in this way from nondestructive frequency testing of a living plant.
2. Reference basis method

2.1. Problem statement

First, let MT and KT be the exact mass and stiffness matrices, respectively, for a forced system
with n degrees of freedom. The true equation of motion is

½MT �f €xg þ ½KT �fxg ¼ ff ðtÞg: (1)
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The term true here is understood to mean very accurate within the framework established by the
available data and the ultimate purpose of the analysis. The associated natural frequencies and
mode shapes of this system are oTi and fTi; respectively, where i ¼ 1 to n: Subscript T here
implies true model.
Second, let MA and KA be the analytical mass and stiffness matrices, respectively, perhaps

obtained using a finite element model or by some other method. Thus, the analytical equation of
motion of the system is

½MA�f €xg þ ½KA�fxg ¼ ff ðtÞg: (2)

In general, the true and the corresponding analytical quantities are not exactly the same.
However, in our case, we assume that MA ¼ MT 	 M to simplify the discussion, since the mass
can be measured with the highest accuracy.
Third, let the resonant frequencies and mode shapes obtained from modal testing be oEi and

fEi; respectively, where i ¼ 1 to m and mpn: Subscript E here implies experimental model. In
matrix notation, the diagonal frequency matrix is

OE ¼

oE1

oE2


 
 


oEm

2
6664

3
7775 (3)

and the n � m mode shape matrix is

FE ¼ ½FE1 
 
 
FEm�: (4)

In many situations, it is reasonable to assume that the measured frequencies are very close to
correct, in that they represent a very accurate measure of the true structural response. In this case,
we can further assume that OE ¼ OT 	 O:
The problem to be addressed now is how to best combine the available analytical model of the

stiffness KA with all available experimental data to obtain an updated stiffness K that is in some
sense closer to the true KT : Since OE has been assumed to be very accurate and MA is the
reference basis, the central issue is therefore how to obtain the best approximation to the true
mode shape and stiffness. In practice, the solution of two multivariable constrained optimization
problems is required, as follows.

2.2. Orthogonalization

The measured mode shape FE does not, in general, satisfy the theoretical requirement of
orthogonality. However, it can be normalized and orthogonalized to satisfy this condition in some
optimal way, which ensures that the corrected modes are closest to the measured ones in the
weighted Euclidean sense. The exact task at hand is: given an n � m measured mode shape matrix
FE and a symmetric positive definite n � n mass matrix M; find the n � m matrix F that minimizes
the weighted Euclidean norm and simultaneously satisfies a weighted orthogonality condition. In
symbolic form, we seek

min f ¼ kNðF
 FEÞk; s:t:FTMF ¼ I ; (5)
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where the weighting matrix is most often (but not always, see [15]) taken to be N ¼ M1=2; and
such that

FEi ¼ ~F
T

Eið
~F
T

EiM
~F
T

EiÞ

1=2; (6)

where FEi is the ith column of the normalized mode shape matrix and ~FEi is the ith column of the
original measured mode shape matrix. Note also that FEi represents the mode shape
corresponding to the ith resonant frequency.
As previously shown [12], the required orthogonalization can be achieved using the Lagrange

multiplier technique to obtain

F ¼ FEðFT
EMFEÞ


1=2; (7)

where the mode shape F satisfies the weighted orthogonality condition established by Eq. (5) and
is closest to the normalized measured mode shape FE :
2.3. Updated stiffness

The stiffness matrix for a real structure is symmetric and positive definite, which implies K 	

LLT: The updated stiffness can be obtained by minimizing its weighted distance from the
analytical stiffness KA; while satisfying the constraints imposed by the equation of motion. In
symbolic form, we seek

min d ¼ kW
1=2ðLLT 
 KAÞW
1=2k; s:t: LLTfFg ¼ O2½M�fFg; (8)

where W is a symmetric but otherwise arbitrary weighting matrix. For example, it could be the
identity matrix, the analytical stiffness matrix, or the mass matrix. For the special case W ¼ M; it
has been shown that the expression for the updated stiffness matrix is [15]

K ¼ KA 
 KAFFTM 
 MFFTKA þ MFFTKAFFTM þ MFO2FTM: (9)

3. Application to wheat

3.1. Experiment

Spring wheat (Triticum aestivum L.) was grown in the greenhouse using standard horticultural
techniques. All plants were grown in 4L pots on the bench in a climate-controlled glasshouse at
the USDA-ARS Research Center in Beltsville, MD. The germplasm for two nearly isogenic
varieties was kindly donated by Dr. Ravi Singh at the CIMMYT (International Center for Maize
and Wheat Improvement, in Mexico). The first variety was Kauz tall, which is typical of
traditional tall wheats and is susceptible to wind-induced crop damage. The second variety was an
elite cultivar called Kauz semidwarf, which can be considered typical of modern wheats and is
resistant to wind-induced crop damage. In contrast to the tall variety, Kauz semidwarf has one
allele (copy) of the Rht1 gene mutation. This gene is one of several similar genes almost
universally present in commercially grown wheats due to its positive effects on wind tolerance and
grain yield [16].
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Selected stalks were tested in vivo at Zadok’s Growth Stage 83–85 [22], i.e., at green maturity.
The stem of potted plants was excited by the reciprocating pushrod of a shaker motor (Ling
Dynamics V200) attached to the stem at a height corresponding to 20% of the total stem height.
The horizontal displacement at this attachment point was varied sinusoidally within the range of
�0:5mm, and the driving frequency was varied systematically in order to identify resonant
frequencies that locally maximized the lateral displacements of the vibrating stalk. The stalk
motion was monitored using 60Hz videophotography and dimensional analysis of the recorded
motion was later performed using NIH Image analysis software. Standard techniques were used
to determine the mass and geometry of the spike and of each of the hollow segments comprising
the stem [2]. The apparatus used in this forced frequency response test is shown in Fig. 1.
The experimental approach allowed the first m ðmpnÞ resonant frequencies to be identified in

the range of 0:5–30Hz. The resulting set of resonant frequencies oEi; where i=1 to m; were
assembled into a diagonal measured frequency matrix OE in accordance with Eq. (3). The
measured horizontal displacements of up to 20 discernible features on the stem were fitted with a
least-square polynomial [17]. The horizontal and angular displacements of each node on the stem
(a node is the intersection of two adjacent segments) were then recovered from the fitting curves,
and assembled into the n � m measured mode shape matrix FE ; in accordance with Eq. (4). Recall
that n represented the dof of the system, and was equal to two times the number of internodes. As
discussed earlier, the measured resonant frequencies were assumed to be very close to the true
values. In contrast, the measured mode shape required normalization and orthogonalization as
described earlier in Section 2.2.
Fig. 1. Forced frequency response test apparatus.
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3.2. Theoretical model

In the theoretical model, the stalk was idealized as a tube made up of several conjoined
hollow cylinders (called internodes) of varying diameters and elastic moduli, which supported
a heavy tip mass (called the spike). Referring to Fig. 2, the solid bulkheads that form the
junctions between any two internodes are called nodes, and the structural configuration is
similar to that of bamboo. Each internode is comprised of multiple layers of anisotropic
Fig. 2. Theoretical model of the heterogeneous structure of interest. A wheat stalk (a) consists of a hollow segmented

stem comprised of 5 to 7 internodes, (b) supporting the grain-bearing spike. (c) Any given internode was assumed to

have constant geometric and elastic material properties along its length.
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water-saturated tissue. Even so, it is still reasonable to assume that its material behavior in
flexure is elastic and can be characterized by an effective longitudinal modulus. This concep-
tion of a wheat stalk entails considerable simplification of the real structure, but captures some
of its essential features. As a further approximation, each internode can be treated as a
vertical beam element whose small deflection response is cubic. In effect, the total stem flexural
behavior was therefore assumed to be piece-wise cubic in accordance with the finite element
formulation summarized below. The bottom end of the stem was considered to be rigidly
fixed in the ground. Due to the simple connectivity of this idealized model, each internode
contributed two additional dof, that is, the horizontal and angular displacements of its upper end
(Fig. 2(b)).
With these assumptions, the element mass and stiffness matrices obtained using the finite

element method [18] are

me ¼
gele

420

156 22le 54 
13le

4l2e 13le 
3l2e

sym: 156 
22le

4l2e

2
66664

3
77775 (10)

and

ke ¼
EeIe

l3e

12 6le 
12 6le

4l2e 
6le 2l2e

sym: 12 
6le

4l2e

2
66664

3
77775; (11)

respectively, where Ee is the longitudinal elastic modulus, Ie is the moment of inertia, le is the
length, and ge is the weight per unit length of internode e; where e ¼ 1 to ne: The maximum value
of ne varied between stalks in the range of 5–7. Here, the weight per unit length of each internode
was calculated using its cylindrical geometry and an assumed specific weight of 0.9 (consistent
with experimental observation).
Preliminary parameter study indicated that the model response was relatively insensitive to the

precise value of the spike modulus. The spike was therefore considered to be a rigid cylinder rather
than another flexible beam element. This simplification was advantageous because it avoided ill-
conditioning of the total stiffness matrix [17]. The net contribution of the rigid spike to the total
mass matrix was determined as follows. Referring to Fig. 2(c), yAðtÞ and yAðtÞ represent the time-
varying linear and angular displacements of the lower end of the spike. When the maximum
lateral stem deflections are small (as it was in the forced vibration test), the horizontal
displacement on any vertical location x on the spike can be approximated as ys ¼ yA þ xyA: And,
if gs is the effective weight per unit length of an idealized cylindrical spike of length ls; the kinetic
energy of the oscillating spike is

Ts ¼
gs

2

Z ls

0

ð _yA þ x_yAÞdx ¼
gs

2
ð _y2

Als þ l2s _yA
_yA þ

1

3
l3s
_y
2

AÞ: (12)
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The partial derivatives

d

dt

qTs

qyA

¼ gsls _yA þ
1

2
gsl

2
s
_yA (13)

and

d

dt

qTs

qyA

¼
1

2
gsl

2
s _yA þ

1

3
gsl

3
s
_yA (14)

were thus obtained, indicating that the spike mass matrix should be

ms ¼ gs

0 0 0 0

0 0 0 0

0 0 ls
1
2
l2s

0 0 1
2
l2s

1
3
l3s

2
66664

3
77775; (15)

where the effective spike length ls and spike weight per unit length gs were again determined via
simple experiments.
The total mass matrix ½MA� of dimension 2ne � 2ne was found by appropriate assembly

of the individual internodal mass matrices (given by Eq. (10)) plus the spike mass matrix
(given by Eq. (15)). Similarly, the total stiffness matrix ½KA� of dimension 2ne � 2ne was
found by appropriate assembly of the individual internodal stiffness matrices (given by
Eq. (11)).
Strictly speaking, the vibrating stalk could be treated as a very lightly damped forced system.

However, its flexural response above the point of excitation was nearly identical to that of an
equivalent undamped free system with the same stiffness and mass. Hence, the homogenous form
of Eq. (2) was posed as a set of i eigenvalue problems

½KA�fFAig 
 o2
Ai½MA�fFAig ¼ 0; (16)

where the eigenvector FAi is the analytical mode shape matrix and the associated eigenvalue oAi is
the resonant frequency for the ith mode.
In this application, the individual entries in the banded analytical stiffness matrix could be

defined symbolically using recursive formulae involving the material and geometric properties of
each internode [2]. However, Eq. (16) could not be solved directly until some estimate of the
unknown moduli of ultimate interest had been obtained. In practice, the stem moduli were
initially assumed to vary linearly with height in order to obtain a first approximation of
KA that minimized the difference between the first two measured frequencies and the
corresponding eigenvalues (but did not use any information about the measured mode shapes).
Once this first estimate of KA became available, a trial updated stiffness K could be found using
Eq. (9). Then, K was iteratively refined using successive approximations of KA based on
progressively improved estimates of Ee; which were recovered from the diagonal entries of the
previous K :
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4. Results

A systematic procedure based on the above theory was used to infer the longitudinal moduli of
about 20 stalks representing both varieties. For clarity of presentation, selected results for only
those stalks with exactly six internodes are presented below.
Fig. 3 shows the inferred moduli for each of five Kauz semidwarf stalks versus height. Each

value is shown at the height corresponding to the geometric center of that internode. Since the
theoretical model had assumed the moduli to be a constant within a given internode, these results
are indicative of a step-wise variation with height. These in vivo material property data were
derived from the true (updated) structural stiffness obtained using the reference basis method.
Note that the fitting curves connecting each data do not have any direct physical interpretation.
Similarly, Fig. 4 shows the inferred moduli for each of three Kauz tall stalks. Again, the value for
each internode is shown at the height of its geometric center and the interpolated curves do not
have any physical meaning. These material property data were also obtained by analysis of
experimental frequency data using the reference basis model updating method.
To facilitate comparison of two varieties of differing height, Fig. 5 shows the average moduli of

the same sample of eight stalks according to internode number. The moduli of both varieties were
largest in the basal (lower) internode 1. However, the differences between the two varieties
(� 6:3GPa for Kauz tall versus � 5:8GPa for Kauz semidwarf) were not statistically significant.
Moving up through the middle internodes, the average moduli are steadily lower, and the
differences between the two varieties reached significance at the 95% confidence level. The apical
(or uppermost) internode 6 was comprised of the most flexible tissue and the differences in moduli
between varieties (� 4:3GPa for Kauz tall versus � 2:9GPa for Kauz semidwarf) approached
significance at the 99% confidence level. These results were selected from a larger sample that also
included stalks with either five or seven internodes.
The elastic moduli inferred for these varieties of wheat were well within the range that has been

defined by previous studies of non-woody plant tissues. Moreover, the nonlinear decrease in stem
Fig. 3. Semidwarf wheat stem tissue moduli as a function of height. The inferred longitudinal moduli for each of six

internodes are shown at the height corresponding to its geometric center, for each of five Kauz semidwarf stalks.
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Fig. 4. Tall wheat stem tissue moduli as a function of height. The inferred longitudinal moduli for each of the six

internodes versus height, for each of three Kauz tall stalks. The genetic background of this variety is identical to that of

Kauz semidwarf except that it lacks the Rht1 gene mutation.

Fig. 5. Longitudinal elastic modulus versus internode number, for two contrasting varieties of wheat. The average (plus

standard deviation) moduli of each internode are shown for Kauz tall (dark shading) and Kauz semidwarf (light

shading). The differences between varieties are more significant in the apical or upper internodes.

J. Zhou, T. Farquhar / Journal of Sound and Vibration 285 (2005) 1109–11221118
tissue moduli with height was consistent with experimental results obtained by Zebrowski using
ultrasonic wave speed measurements [5]. While the qualitative patterns established by that earlier
study lend credence to the new results, this is the first study to provide a quantitative map of the in
vivo height-wise variations in wheat stem tissue moduli. For this reason, the crucial step of model
validation must rely on indirect supporting evidence, as discussed below.
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5. Discussion

The results indicated that the internodal tissue closest to the ground exhibited an effective
longitudinal modulus approaching the value reported for wood (e.g., 11GPa for Douglas fir [19]).
This is plausible since the basal stem of wheat is partially lignified and experiences the highest
levels of wind-induced bending stress. In contrast, the tissue of both varieties, especially Kauz
semidwarf, was considerably more flexible in the upper stem. Again, this was consistent with
expectation, and reflects the optimization trade-off between stem rigidity versus aeroelasticity. As
discussed elsewhere, the latter is thought to enhance the wind tolerance of many elite semidwarf
varieties in comparison to traditional tall varieties [20].
Eq. (9) does not require any particular number of frequencies or mode shapes to obtain

estimates of Ee: One might expect that increasingly accurate estimates of the moduli would be
obtained as additional high-frequency information was included in the model updating process. In
fact, the improvement was very minor and was similar to the resolution of the frequency response
data (i.e., � 1%) in this study. In fact, a trial stiffness matrix could be formulated using only the
first two resonant frequencies, and the updating process could then be performed using only the
first resonant frequency and mode shape. In practice, it was determined that estimates of Ee

obtained on this basis were very similar to those that were obtained when all of the available
frequency response information (i.e., up to 4 frequencies and modes less than 30Hz) was included
in the process. To illustrate this point, Fig. 6 shows the percentage change in the average
internodal moduli of Kauz semidwarf, when the updating process was based on the first two
modes rather than the fundamental mode only. These results showed that the values of the
predicted moduli were hardly affected by the inclusion of higher frequency data, which implied
that the updated model changed very little, consistent with the findings of an earlier report [21].
Fig. 6. Change in predicted moduli as number of mode shapes used for model updating increases. The figure shows the

change in the predicted modulus of each internode as the number of mode shapes used for model updating was

increased from one to two. In this and other applications in which the fundamental mode shape can be determined with

accuracy, higher order mode shape data may have very little effect on the outcome of the updating process.
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The reference basis method made it possible to obtain a reasonably accurate estimate of
spatially varying material properties based entirely on the first few modes of vibration. In essence,
this was possible because the fundamental and second mode shapes were known with relatively
high level of accuracy. It is likely that this useful observation can be generalized to many
engineering applications. It implies that the relatively easy measurements of large-amplitude, low-
frequency mode shapes can capture enough information to permit accurate spatial mapping of
material property data. In many cases, this may obviate the need to perform the more difficult
measurements of smaller amplitude, higher frequency response. Alternately, when such
information is also available, as it was in the present application, it can provide a redundant
check on the validity of the updated model.
As might be expected, the updated resonant frequencies obtained using two mode shapes were

not exactly the same as the measured frequencies. Interestingly, this need not be understood to
imply that the moduli determined from the updated model were less than accurate. Referring to
Table 1, observe that the true fundamental frequency was slightly higher than the measured value.
Table 1

True versus measured resonant frequencies in first three flexural modes

Predicted frequency (Hz) Measured frequency (Hz)

1.09 1.02

7.86 7.90

21.20 20.50

The measured frequencies were found by video dimensional analysis and the true (i.e., updated) resonant frequencies

were found by reference basis model updating.

Fig. 7. Third mode shape of updated model compared with experimental data. The continuous curve is the third mode

shape of the updated model based on the first two resonant frequencies and modeshapes. The dots are the actual

displacements of selected locations on the vibrating stem at resonance. Remarkably, the updating process improves the

accuracy with which the material property data of ultimate interest can then be determined.
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This was almost certainly due to the imprecise theoretical approximation of the lower boundary
condition as rigidly fixed. In fact, the degree of fixation provided by the alligator clamp attaching
the reciprocating pushrod to the basal stem was unknown. Similarly, the true second resonant
frequency was slightly lower than the measured value. Again, this was almost certainly due to the
imprecise theoretical assumption of spike rigidity. To further illustrate this point, Fig. 7 compares
the updated and measured third mode shapes. The overall match is reasonably compelling, but the
updated shape is that of a stem that is slightly less compliant at its lower end, and slightly more
compliant at its upper end, in comparison to observation. The qualitative differences in measured
versus predicted mode shape were sufficiently large that the updated stem moduli were
substantially different from those obtained using the original theoretical model. Remarkably, the
nature of the shift in system response that occurs during the updating process is such that the
updated behavior is more similar to the experimental response that would occur if the theoretical
model were correct, than the actual structural response! Thus, as demonstrated in this unusual
application of frequency response analysis, the reference basis model updating process can
improve the accuracy with which the intrinsic material properties of vibrating structure can be
determined.
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